Wonders of the Sun

NASA/Jenny Mottar
Let's look at the sun. No, not directly! When we explore what we know about the purpose, location, layers, immensity, complexity and more, it brings a sense of wonder. It should also bring a sense of thankfulness, as it is perfectly placed to make life on Earth possible. Here is a perspective from a creationist astrophysicist. Don't worry, most of it is written for us regular people.
It may appear small in our sky at a distance of 93 million miles, but the sun is actually 109 times the diameter of Earth and over a million times the volume of Earth. The sun is the largest single object in our solar system and comprises 99.86 percent of all its mass. If a ten-pound bowling ball represented the mass of the sun, then all the planets, moons, comets, and everything else in our solar system could be represented by the combined mass of one nickel and one penny. Jupiter would be the nickel.
The sun is comprised almost entirely of hydrogen and helium gas. But how do we know this? We measure it by analyzing sunlight using a spectroscope, which breaks white light into a rainbow of colors called a “spectrum.” Careful analysis of the solar spectrum reveals narrow dark bands that indicate certain wavelengths of light are missing. The position of these bands corresponds to the substance that produced the light. It’s like an atomic fingerprint. In fact, helium was actually discovered on the sun through spectroscopy before it was found on Earth. This is why it has the name “helium” from “Helios,” the ancient Greek deity of the sun. Similar analysis of starlight reveals that stars are also spheres of hydrogen and helium gas like the sun—but at much greater distances. The sun is so hot that for most of its interior, the atoms are completely ionized—their electrons have been stripped away from their nuclei.
You can read the rest of "The Solar System: The Sun", in context, here.