![]() |
Derivative from The Passion of Creation by Leonid Pasternak, 1880s |
Nearly a century ago, Edwin Hubble found that there is a linear relationship between redshifts and distances of galaxies. We now call this the Hubble relation, or the Hubble law. The most straightforward interpretation is that the universe is expanding, but keep in mind that this is an interpretation of the Hubble law. The dominant cosmological model today, the big bang, is based upon an expanding universe. Within the big bang model, it is believed that most galaxies formed approximately the same time early in the universe, about 13 billion years ago. If the speed of light is finite, then there is a look-back time with increasing distance. That is, we will see the most distant galaxies (the ones with the greatest redshift) as they appeared in their youth. However, we will see nearby galaxies (the ones with the lowest redshift) much closer to their current age. Hence, the study of very distant, high redshift galaxies will lead to a greater understanding of how galaxies and stars formed. This is very important in modern cosmology because astronomers have developed elaborate theories of how the first stars and galaxies must have formed within the big bang model. A key part of this is the belief that in the early universe there must have been intense star formation, with stars forming at a much higher rate than they form today.To read the entire article, click on over to "Massive Galaxies in the Early Universe — Lighting the Way to Dusty Death for Evolutionary Theories?"
They're singing this song at the Darwin Ranch at times like these:
Looking for a comment area?
You can start your own conversation by using the buttons below!