![]() |
Image credit: Darryl Leja, NHGR / National Human Genome Research Institute |
One of the biggest problems for evolution is how animal and plant cells, eukaryotes, could have been derived from precursor bacteria-like cells called prokaryotes. Unlike prokaryotes, eukaryotic cells are highly compartmentalized and contain membrane-bound organelles such as the nucleus, mitochondria, and (in plants) chloroplasts that are not found in bacteria or archaea (non-bacterial single-celled prokaryotes). Along with numerous other genetic and molecular differences, these complex cellular organelles not found in prokaryotes, form an unbridgeable gap for evolution to somehow accomplish.To read the rest, click on "Endosymbiosis: A Theory in Crisis".
Evolutionists have long struggled to present a non-speculative explanation for the origin of the eukaryotic cell nucleus and other complex cellular features. One idea that has been quite popular for about 50 years is that mitochondria and chloroplasts were derived from a mythical process called endosymbiosis. The heart of this explanation is the fact that the mitochondrion possesses a small circular piece of DNA containing some of the genes it needs to function, combined with a process of organelle replication. This functional combination looks similar to how bacterial DNA is constructed and how bacteria reproduce, but the appearances are only superficial.
Looking for a comment area?
You can start your own conversation by using the buttons below!