![]() |
Image credit: US Geological Survey (usage does not imply endorsement of site contents) |
It has long been a puzzle to secular geologists as to how conventional slow-and-gradual plate tectonics got started. But recently a multi-national research team, led by geophysicist Taras Gerya at ETH-Zurich in Switzerland, has claimed to finally have a solution. Their co-authored paper was published on November 12, 2015, in one of the leading weekly science journals.To read the rest, click on "How Did Plate Tectonics Get Started on Earth?"
Solving a Problem
It is currently widely believed among secular geologists that early in the earth’s history the earth’s entire surface was covered by a thick, cold, and buoyant layer of basaltic crust that acted to keep the earth’s surface rigid and motionless. It has therefore been a puzzle how plate tectonics might have gotten started under these unfavorable, early conditions. By contrast, in today’s world, new subduction zones seem to be explainable through existing plate forces and existing zones of lithospheric (crustal) weakness. But in the scenario secular geologists imagine for the early earth, there are no zones of lithospheric weakness or any plate-driving forces.
Looking for a comment area?
You can start your own conversation by using the buttons below!